
SignSpeak Project
Scientific understanding and vision-based technological development for

continuous sign language recognition and translation

Report explaining the framework and GUI design

Minor Deliverable D.6.1

 Release version: V 2.0

Grant Agreement Number 231424

Small or medium-scale focused research Project (STREP)

FP7-ICT-2007-3. Cognitive Systems, Interaction, Robotics

Project start date: 1 April 2009

Project duration: 36 months

Dissemination Level

PU Public  (can  be  made  available  outside  of 
SignSpeak Consortium without restrictions) X

RE
Restricted to SignSpeak Programme participants 
and  a  specified  group  outside  of  SignSpeak 
consortium

IN SignSpeak Limited (only available to a specified 
subset of SignSpeak programme participants)

LI

Distribution list 
(only for RE or LI 

documents)



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

0 General Information

0.1 Document
Title Report explaining the framework and GUI design
Type Minor Deliverable
Ref D.6.1
Target version V2.0
Current issue V2.0
Status Draft
File D_6_1_v2.odt
Author(s) Pablo Alonso-Villaverde Roza / CRIC
Reviewer(s) Gregorio Martínez / CRIC
Approver(s) Gregorio Martínez / CRIC
Approval date
Release date 22/09/11

0.2 History

Date Version Comment
03/01/01 V1.0 Released first description of D.6.1 report

22/09/11 V2.0 Released second description of D6.1 report

0.3 Document scope and structure
WP6 addresses the integration of the development made in WP3, WP4 and WP5 and a 
graphical user interface aimed at end users (non-technical users), who will  use this 
interface as a tool to evaluate the translation process.

This document covers the work done and all considerations that have been taken into 
account for the development of these tasks.

Authors Group
Pablo Alonso-Villaverde Roza CRIC

2/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

Table of Contents
0 General Information....................................................................................................2

0.1 Document............................................................................................................2

0.2 History.................................................................................................................2

0.3 Document scope and structure............................................................................2

1 Overview.....................................................................................................................5

2 Requirements..............................................................................................................5

2.1 Integration framework..........................................................................................5

2.2 Graphic user interface for evaluation purposes...................................................6

3 Design.........................................................................................................................7

3.1 Design of the integration framework....................................................................7

3.1.1 Overall design..............................................................................................7

3.1.2 Application design........................................................................................8

3.1.2.1 Graphic user interface..........................................................................8

3.1.2.2 Graph model.......................................................................................10

3.1.2.2.1 A fast overview of the system......................................................10

3.1.2.2.2 Easy orderings of modules..........................................................10

3.1.2.2.3 Check for design mistakes..........................................................11

3.1.2.2.4 Control over the execution process.............................................11

3.1.2.2.5 Flexible design and faster modifications......................................11

3.1.2.2.6 Easy to expand...........................................................................12

3.1.2.2.7 Graph model implementation......................................................12

3.1.2.3 Wrapping modules and corpora..........................................................13

3.1.2.3.1 Modules......................................................................................13

3.1.2.3.2 Corpora.......................................................................................13

3.1.2.3.3 Module Parameters  ...................................................................13

3/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.1.2.4 Monitors and breakpoints...................................................................15

3.1.2.5 Standard Outputs ..............................................................................15

3.2 Graphic user interface for evaluation purposes.................................................17

3.2.1 Feedback system.......................................................................................17

3.2.2  Home page...............................................................................................18

3.2.3 Corpus description.....................................................................................19

3.2.4 Search criteria............................................................................................20

3.2.5 Select a video............................................................................................21

3.2.6 Watch translation.......................................................................................22

3.2.7 Watch translation and gloss information.....................................................23

3.2.8 Feedback form...........................................................................................24

4 Conclusions..............................................................................................................25

4/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

1 Overview
This document deals with the integration framework design of different work packages 
developed for SignSpeak. We will  also consider the development of a user interface 
to evaluate the translations of SignSpeak by end users.

2 Requirements
WP6 has two main requirements:

• Create an integration framework for technical users (researchers, developers) 
who create software modules for SignSpeak.

• Create a user  interface that  will  allow end users to evaluate  the translation 
process carried out by SignSpeak.

2.1 Integration framework
The integration work is of critical  importance. Integration means to put each part in 
order to  create a full  system that  works  correctly.  Heterogeneous executables  with 
multiple parameters and different input/output formats developed by different RTDs can 
complicate the transmission of information among the parts and generate malfunctions.

The desired features for the integration framework are:

1. Build a information chain. The main aim of the integration phase is to ensure 
that information flows smoothly throughout a network of connected deliverables 
that belong to different work packages.

2. No limitations.  The framework  should  not  limit  what  can be  done in  each 
deliverable.  The  developer  must  have  total  freedom  to  perform  actions  as 
deemed necessary. 

3. Independence of input source. It is important to make sure that the system 
will work with any type of input, so all the corpus must be interchangeable. 

4. Extensibility.  Extensibility  is  needed to deal  with  unexpected changes.  It  is 
also important to note that although the final prototypes are scheduled, the time 
to integrate this work is short and software modifications are usual.

5/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

5. Monitoring in mind. One of the purposes of the framework is to easily detect 
erroneous behaviors in different parts of the project. So an important task of the 
framework is the design of “monitors”. These monitors are graphic displays to 
check  the  output  of  different  modules  of  the  project.  Breakpoints  will  allow 
developers to see the results of their calculations in the monitors. For example, 
a monitor can combine tracking information over video to check if the tracking 
system follows the hands and head of the signer accurately.

2.2 Graphic user interface for evaluation purposes
The  end  users  that  will  evaluate  the  performance  of  the  translations  made  by 
SignSpeak need a very simple system, without inner technical details. All they need is 
to check the accuracy of the translations.

The desired features are:

1. Easy interface and simple operation. We must avoid interfaces that require 
the users to learn new skills to use. Operations to check a translation must be 
as simple as possible.

2. Avoid technical details. A end user doesn't need to know details related to the 
techniques involved in the translation process. In most cases, that information 
will only make the evaluation tool seem more complicated.

6/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3 Design

3.1 Design of the integration framework

3.1.1 Overall design
The design of  the framework  is  based on the data-flow model.  In this approach,  a 
graph or network structure is used to represent a full system made up by a combination 
of programs or processes.

In a graph structure there are nodes and connections. 

Nodes (blue circles in the previous drawing) represent programs. Connections (black 
arrows) represent dependencies between two programs and data flow, so if two nodes 
(programs) are connected, it means that the program at the end of the  arrow needs 
data generated by the program at the beginning of the connection.

We have chosen the data-flow model for several reasons:

• The graph  is  a  valid  representation  of  a  full  system,  showing  the  different 
components and their dependencies.

• It  is  flexible,  allowing  us to add or  remove nodes (programs)  as needed to 
recreate modifications on the full system being modeled; additionally we can 
use this model to make representations of isolated parts of the system.

• The framework is not modified by modifications on the modeled systems.

The framework will contain node definitions for each program that makes up a Work 
Package, and these nodes will be used as “bricks” to build a network that will represent 
the full translation system or a subsystem.

7/25

Drawing 1: A graph



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.1.2 Application design
The framework application will be a desktop application that will allow the modeling of a 
full or partial SignSpeak system, following the concepts of data-flow explained in the 
previous section. It will allow settings to be modified for each deliverable and finally run 
the modeled system. 

3.1.2.1 Graphic user interface

Most operations of the application will  be used from a main window divided in three 
zones:

• A palette of modules on the left side to model the graph

• A drawing zone to model the graph of modules visually

• Menus  and  command  buttons  to  carry  out  common  operations,  drawing 
functions and execute the graph in the upper zone, above the drawing zone 
and palette

The palette will contain modules represented by buttons or icons. These modules will  
be grouped according to functionality. The user can select a module with a mouse click 
and add it to the drawing zone with a second mouse click.

In the drawing zone, the user can model the graph structure using the modules of the 
palette as components.

Additional secondary windows are used for different purposes:

• Validate user operations

• Edit properties of the nodes in the graph, etc.

8/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

9/25

Drawing 2: Main window

Drawing 3: Node properties



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.1.2.2 Graph model

As mentioned in previous sections, the framework will allow technical users to create a 
representation of the system by means of a graph or network model. Using a graph 
model provides some important benefits:

3.1.2.2.1 A fast overview of the system

This  model  will  give  us  information  about  the  modules  involved  in  the  system 
(represented by the nodes of the graph) and their dependencies (connections of the 
graph) in an easy visual way.

3.1.2.2.2 Easy orderings of modules

Using a graph allows us to deduce a linear ordering of the connected nodes. This is 
specially useful to generate an execution ordering of the modules included in the graph 
using the information added by connections. 

In simple graphs,  is  easy to detect  correct  execution  orderings,  for  instance in  the 
following  graph,  it  is  clear  that  module  A and module  B must  be executed  before 
module C.

When graphs are more complicated it is difficult to guess a correct execution order, but 
there are graph-specific algorithms that will give us correct orderings.

The  algorithm  used  to  deduce  the  orderings  is  known  as  “Topological  ordering 
traversal”.

10/25

Drawing 4: Simple graph

Drawing 5: Complex graph



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.1.2.2.3 Check for design mistakes

This  algorithm  will  also  detect  some  common  mistakes  like  cyclic  dependencies. 
Taking a  look  at  the  next  graph  we  can  see  a  cyclic  dependency  to  be  avoided, 
because three programs (A, B and D) are interdependent,  and that is not  possible 
because one cannot have an execution order with interdependent programs.

3.1.2.2.4 Control over the execution process

Given a correct linear ordering of  modules,  we can execute the modules one after 
another to carry out a full execution of the system and we can use that list to control the 
execution and set breakpoints whenever necessary,  to analyze results of a specific 
module before executing the next module on the execution list.

3.1.2.2.5 Flexible design and faster modifications

It will allow us to try and experiment different combinations of modules. For example 
we  could try to  compare two combinations of modules to check which one generates 
better results just reordering and reconnecting the nodes.

11/25

Drawing 6: Graph with a cycle 

Drawing 7: Different combinations of modules



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.1.2.2.6 Easy to expand

It  is  easy to add new modules  as they are created by developers.  To add a new 
software module we must only create a new node definition so the application knows 
about the existence of the new module. That process only needs to be done once by 
the user.

New modules are not limited to modules directly related to the translation process. It is 
possible to add any kind of  necessary software,  for  example  programs to combine 
information, data format converters, etc.

3.1.2.2.7 Graph model implementation

A minimal implementation of a graph model for our needs must include:

• A graph data structure with data types to represent generic nodes, connections 
and adjacency information among nodes

• Graphic classes to draw the graphs on the application window 

• An implementation of a topological ordering traversal for graphs, in order to:

◦ Get execution orderings of the modules

◦ Check for cyclic dependencies among modules

• Load and save functions for the graphs

• The graph nodes must be as generic as possible, i.e. without knowledge of the 
details relative to modules or corpora

12/25

Drawing 8: Adding a new module to a graph



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.1.2.3 Wrapping modules and corpora

The modules and corpora, represented in a graph model by nodes, are probably the 
most variable objects in the framework. Corpora receive updated annotations, software 
modules are released, updated or need different parameters, etc.

The graph  should  be  isolated  from these  changes,  so  wrapping  the  modules  and 
corpora with a data type that manages all the internal details is necessary.

Wrapping is a methodology to encapsulate a foreign object and make it pluggable into 
another system more easily.

3.1.2.3.1 Modules

Among the modules we must wrap two types of software modules:

• Executables: any conventional program written in any programming language. 
Executables can be called directly,  by means of scripts, or as subprocess of 
other executables.

• Matlab programs: There are some deliverables developed using Matlab. These 
programs must be executed by means of the Matlab development tools.

In order to call different modules, the framework will use an intermediate shell script 
that  will  call  the  desired  module  by  means  of  a  valid  command  line  using  the 
corresponding parameters. The parameters needed to call a module can be set from 
the framework, editing the properties of the node that represents that module in the 
graph model.

3.1.2.3.2 Corpora

Corpora is  a set  of  data.  Each corpus can be defined by different  parameters like 
folders  that  store  videos,  images,  groundtruth  information,  etc,  so  they  can  be 
considered as software modules without executables, although with a variable number 
of parameters.

3.1.2.3.3 Module Parameters  

Most software packages accept parameters, and the SignSpeak deliverables are no 
exception. In the framework application we can set values to the parameters of each 
module. If we edit the properties of any node of a graph, we will be able to set these 
values and use them later when the module is executed.

The framework support different types of parameters adapted to different data. There 
are parameters specialized in numeric values, lists of files, folders, text strings, boolean 
values, etc.

13/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

 When a  module is defined in the framework we also define its parameters such as: 

• Common parameters: These parameters are used internally by the module to 
modify its internal settings, activate options, etc.

• Output  parameters:  These  parameters  can  be  used  by  the  module  as  a 
common parameter, but they can also be sent to any node connected to the 
current module. A typical case is using an output parameter to indicate where 
the results of the program are to be stored after its execution. This parameter 
can be sent as input of another module so that module knows where to look for 
those results.

• Input parameters: These parameters can be used as common parameters too, 
but they can receive values from output parameters of other modules. 

In Drawing 3: Node properties, we can see how we can set values to parameters when 
editing the properties of a node that represents a module.

14/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.1.2.4 Monitors and breakpoints

One of  the  purposes  of  the  framework  is  to  easily  detect  erroneous  behaviors  in 
different parts of the project. So an important work in the framework applications is the 
design of these monitors such as graphic displays to check how the hand/head tracker 
is working. 

It is also important to allow the user to add node breakpoints to see the values in the 
monitors. Breakpoints (BPs) can be set by the user at points of the graph where s/he 
wants to check the results of previous operations.

Monitors  can be part  of  the graph,  represented as a node like  any other  software 
module. They can be programmed independently of the framework, so it is possible to 
develop new monitors when needed without modifying the framework.

3.1.2.5 Standard Outputs 

One  problem  of  the  integration  work  is  the  dependence  of  data  formats  between 
different  interconnected  modules.  When  a  module  generates  a  result,  it  must  be 
defined in a format that can be used by other modules that need this information. This 
data  interchange  in  made  at  file  level  so  standard  output  formats  for  results  are 
necessary.

To solve this problem, a good option is to define some fixed data structures where the 
results of the computations made by the modules can be accommodated. 

15/25

Drawing 9: A monitor showing tracking information



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

Of course, an alternative solution would be create new modules specialized in data 
conversions, but if the rest of modules keep generating results without following certain 
conventions,  new data  converters  must  be created.  This  alternative  is  not  a clean 
solution.

Using standard formats will favor:

• Independence between modules

• Modules that are easily interchangeable

• The development of monitors because they do not need to support different 
data formats

16/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2 Graphic user interface for evaluation purposes
Perhaps the most familiar interface for people to use nowadays are web pages.

• They don't require the user to learn new skills. Most people can use them.

• Allows simple usage. Most operations are performed with single mouse clicks. 

For these reasons, the chosen system to create the graphic interface for evaluation 
purposes will be a web page.

The functions to be carried out by this page are:

• Select a corpus

• Select  a video in the corpus by means of different selection rules (name of 
signer,  a gloss in the video)

• Once the video is selected, choose between watching the translation or watch 
the translation with gloss information.

The process is quite linear, and easy to repeat.

As a result of these ideas, we have created a web proposal in collaboration with EUD 
(European Union of the Deaf) to be used as an evaluation tool. Contents of the pages 
are provisional and subject to change and/or revisions if  necessary. These are only 
provisional designs.

3.2.1 Feedback system
The users of these web pages will be able to give feedback after watching any video. 
Once the video playing has finished, a new feedback form will appear on the screen 
requesting the user for any information he would like to submit about the translation or 
the web system. This information will  be useful to correct mistakes and improve the 
accuracy and performance of the system.

17/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2.2  Home page
The home page will contain:

• A links bar near the top of the window to access to the home page, description 
of the Phoenix corpus, translation operations and help

• A short description of the project and a video signing the same description

• A link to the official website (www.signspeak.eu) 

• A set of buttons to change the language of the web page

18/25

http://www.signspeak.eu/


D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2.3 Corpus description
This page is accessed by means of the link labeled “Phoenix(DGS)”. It will contain:

• A links bar near the top of the window to access to the home page, description 
of the Phoenix corpus, translation operations and help

• A text describing the corpus and a video signing the same text

• A link to the official website (www.signspeak.eu) 

• A set of buttons to change the language of the web page

19/25

http://www.signspeak.eu/


D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2.4 Search criteria
This is the first page shown when the “Translate” link is clicked.

It will  allow the user to define search rules based on the name of the signer and a 
gloss.

If the “search” button at the bottom of the page is clicked, a new page will be appear on 
the screen showing a list of videos that follow our search rules.

20/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2.5 Select a video
This page shows a list of the videos that follow our search criteria.

The list will contain the name and data of the video, and next to each video there are 
two links labeled “View”.  One will  take us to a page to watch the translation of the 
video, the other one will take us to a page to watch the translation and glosses of the 
video.

21/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2.6 Watch translation
In this page the user will be able to read the translation of a video and watch the video 
while it's played next to the translation.

The translation will  be previously generated as a result of processing the video with 
SignSpeak.

22/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2.7 Watch translation and gloss information
In this page the user will  be able to see both the translation and the glosses of the 
video while the video is played. 

The translation will  be previously generated as a result of processing the video with 
SignSpeak.The glosses will be highlighted as the signer in the video signs them. 

23/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

3.2.8 Feedback form
This is a very simple form page to collect information from the users of the web pages. 
They can submit information about the translations or the use of the web pages.

24/25



D.6.1 - Report explaining the framework and GUI design – V2.0                                       SignSpeak Project

4 Conclusions
After the study of the requirements and the analysis of the most important components 
we have defined a formal framework that covers the main needs of the project.

The  design  of  the  framework  is  widely  extensible  thanks  to  the  use  of  data-flow 
paradigm, so once the framework is  developed we will  be able to integrate all  the 
modules easily. In addition, the framework decouples the different parts using standard 
outputs and making the framework more changeable.

Finally, we have presented a user interface for evaluation purposes which is easy to 
use for non-technical users.

25/25


	0 General Information
	0.1 Document
	0.2 History
	0.3 Document scope and structure

	1 Overview
	2 Requirements
	2.1 Integration framework
	2.2 Graphic user interface for evaluation purposes

	3 Design
	3.1 Design of the integration framework
	3.1.1 Overall design
	3.1.2 Application design
	3.1.2.1 Graphic user interface
	3.1.2.2 Graph model
	3.1.2.2.1 A fast overview of the system
	3.1.2.2.2 Easy orderings of modules
	3.1.2.2.3 Check for design mistakes
	3.1.2.2.4 Control over the execution process
	3.1.2.2.5 Flexible design and faster modifications
	3.1.2.2.6 Easy to expand
	3.1.2.2.7 Graph model implementation

	3.1.2.3 Wrapping modules and corpora
	3.1.2.3.1 Modules
	3.1.2.3.2 Corpora
	3.1.2.3.3 Module Parameters  

	3.1.2.4 Monitors and breakpoints
	3.1.2.5 Standard Outputs 


	3.2 Graphic user interface for evaluation purposes
	3.2.1 Feedback system
	3.2.2  Home page
	3.2.3 Corpus description
	3.2.4 Search criteria
	3.2.5 Select a video
	3.2.6 Watch translation
	3.2.7 Watch translation and gloss information
	3.2.8 Feedback form


	4 Conclusions

